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Simple solution 1
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Simple solution 2
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Trees
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Pseudo-code
proc find(x) ≡

while parent(x) ≥ 0

x := parent(x)

end

.

proc union(x, y) ≡

rx := find(x)

ry := find(y)

if rx 6= ry

parent(ry) := rx

fi

.
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Balancing
Prevent degenerate trees:

• Make shallower tree the child of the deeper
• Make smaller tree the child of the larger

Height/size can be stored in root.
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Path compression
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Minimum spanning trees
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Kruskal’s algorithm
• Start with no edges in the MST

• Add the shortest unused edge that does not
create a cycle

• Repeat until V − 1 edges have been added.
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