The union-find problem

Bruce Merry

Background

Simple solution 1

0	1	2	0	0

Simple solution 2

$0: \quad \mathrm{A} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$
1: B
2: C

Trees

Trees

Pseudo-code

$$
\text { proc find }(x) \equiv
$$

$$
\underline{\text { while }} \operatorname{parent}(x) \geq 0
$$

$$
x:=\operatorname{parent}(x)
$$

end

proc union $(x, y) \equiv$

$$
\begin{aligned}
& r_{x}:=\text { find }(x) \\
& r_{y}:=\text { find }(y) \\
& \text { if } r_{x} \neq r_{y} \\
& \quad \text { parent }\left(r_{y}\right):=r_{x}
\end{aligned}
$$

$$
\underline{\mathrm{fi}}
$$

Balancing

Prevent degenerate trees:

- Make shallower tree the child of the deeper
- Make smaller tree the child of the larger Height/size can be stored in root.

Path compression

Path compression

Minimum spanning trees

Kruskal's algorithm

- Start with no edges in the MST

Kruskal's algorithm

- Start with no edges in the MST
- Add the shortest unused edge that does not create a cycle

Kruskal's algorithm

- Start with no edges in the MST
- Add the shortest unused edge that does not create a cycle
- Repeat until $V-1$ edges have been added.

