
The union-find problem
Bruce Merry

Training camp 1, 2006, Cape Town – p. 1/10



Background

A

E

D

B

C

Training camp 1, 2006, Cape Town – p. 2/10



Simple solution 1

A

E

D

B

C

0 1 2 0 0

Training camp 1, 2006, Cape Town – p. 3/10



Simple solution 2

A

E

D

B

C

0: A → D → E
1: B
2: C

Training camp 1, 2006, Cape Town – p. 4/10



Trees

A

E

D

B

C

Training camp 1, 2006, Cape Town – p. 5/10



Trees

A

E

D

B

C

Training camp 1, 2006, Cape Town – p. 5/10



Pseudo-code
proc find(x) ≡

while parent(x) ≥ 0

x := parent(x)

end

.

proc union(x, y) ≡

rx := find(x)

ry := find(y)

if rx 6= ry

parent(ry) := rx

fi

.

Training camp 1, 2006, Cape Town – p. 6/10



Balancing
Prevent degenerate trees:

• Make shallower tree the child of the deeper
• Make smaller tree the child of the larger

Height/size can be stored in root.

Training camp 1, 2006, Cape Town – p. 7/10



Path compression

D

A F E

B H

C G

D

A F H C E

B G

Training camp 1, 2006, Cape Town – p. 8/10



Path compression

D

A F E

B H

C G

D

A F H C E

B G

Training camp 1, 2006, Cape Town – p. 8/10



Minimum spanning trees

A

B C G

D E

F

1

2

6

1

2 4 4

2

1 2

1

Training camp 1, 2006, Cape Town – p. 9/10



Kruskal’s algorithm
• Start with no edges in the MST

• Add the shortest unused edge that does not
create a cycle

• Repeat until V − 1 edges have been added.

Training camp 1, 2006, Cape Town – p. 10/10



Kruskal’s algorithm
• Start with no edges in the MST
• Add the shortest unused edge that does not

create a cycle

• Repeat until V − 1 edges have been added.

Training camp 1, 2006, Cape Town – p. 10/10



Kruskal’s algorithm
• Start with no edges in the MST
• Add the shortest unused edge that does not

create a cycle
• Repeat until V − 1 edges have been added.

Training camp 1, 2006, Cape Town – p. 10/10


	Background
	Simple solution 1
	Simple solution 2
	Trees
	Trees

	Pseudo-code
	Balancing
	Path compression
	Path compression

	Minimum spanning trees
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm


